Dull as Ditchwater?

lode

19th April 2010.

The murky, smelly sediments at the bottom of a canal or ditch might not be the obvious place to find a novel form of bacterial life which prompts questions about the early evolution of metabolism, the nature of the biological methane sink, or the possible role of man-made pollution in creating a microbe which ingeniously generates its own fuel supply.  A study by researchers in Netherlands (Ettwig et al., 2010, Nature) has revealed a new type of oxygen-producing, methane-eating bacteria living in just such an unpromising environment, and the findings have expanded our understanding of the interaction between methane and the biosphere.

Earlier studies investigating an enrichment culture of nitrate-rich sediments of the Twente Canal revealed that these sediments contain bacteria which oxidise methane anaerobically via a process apparently fuelled by nitrite reduction (Raghoebarsing et al., 2006, Ettwig et al. 2008). Hitherto, anaerobic methane oxidation was thought to be the preserve of ANME (ANaerobic MEthane oxidising) archaea acting in consortium with sulfate-reducing bacteria in marine sediments.

The same research group, based at Radboud University, Nijmegen, has now demonstrated that the anaerobic methane oxidation is performed by a novel bacterium, provisionally namedMethylomirabilis oxyfera, which acts as its own DIY oxygen generator. M. oxyfera first reduces nitrite to nitric oxide (NO) which is then split by a putative nitric oxide dismutase enzyme into O2and N2. The self-produced oxygen is then used to fuel methane oxidation as in conventional oxygen-dependent methanotrophy. Genomic studies of M. oxyfera revealed the presence of genes encoding for the well-established pathway for aerobic methane oxidation. M. oxyfera’slack of genes encoding enzymes known to be crucial for anaerobic methane oxidation in ANME archaea highlights the novelty of the ‘crypto-aerobic’ metabolism revealed in this study.

This clear demonstration that microbial life can generate oxygen from nitrogen oxides provides fresh material for speculation about the evolution of metabolism in early Earth, prior to the Great Oxidation Event (2.45 Gyr ago). Alternatively, the possibility that man’s agricultural activities have provided a niche which microbial activity has evolved to exploit, is also suggested by the capabilities of the newly discovered Dutch ditch dweller.

References:

Ettwig et al. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature,464, 543-548.

Ettwig et al. (2008). Denitrifying bacteria anaerobically oxidise methane in the absence ofArchaea. Environmental Microbiology, 10, 3164-3173.

Raghoebarsing et al. (2006). A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440, 918-921.